
International Journal of Electronics, Communication & Soft Computing Science and Engineering
 ISSN: 2277-9477, Volume 2, Issue 4

16

Page Replacement Algorithms – An Evolution

 V. M. Aswar Prof. A. P. Bodkhe

Abstract —The operating system uses virtual memory for

better memory utilization. A virtual memory management

system needs efficient page replacement algorithms to decide

which pages to evict from memory in case of a page fault. Over

the years many algorithms have been proposed for page

replacement. Each algorithm attempts to minimize the page

fault rate while incurring minimum overhead. As newer

memory access patterns were explored, research mainly

focused on formulating newer approaches to page replacement

which could adapt to changing workloads. This paper attempts

to summarize major page replacement algorithms proposed till

date. We look at the traditional algorithms such as LRU and

CLOCK, and also study the recent approaches such as LIRS,

CLOCK-Pro, ARC, and CAR.

Key Words — Page Replacement, LRU, LIRS, CLOCK-Pro,

ARC, CAR.

I.INTRODUCTION

Memory is an important resource that must be carefully

managed. Since main memory is usually too small to

accommodate all the data and programs permanently, the

computer system must provide secondary storage to back up

main memory. Memory consists of a large array of words or

bytes, each with its own address. The CPU fetches

instructions from memory according to the value of the

program counter. These instructions may cause additional

loading from and storing to specific memory addresses.

In order to realize the full potential of multiprogramming

systems it is essential to interleave the execution of more

programs than can be physically accommodated in main

memory. Hence we use a two – level memory hierarchy

consisting of a faster but costlier main memory and a slower

but cheaper secondary memory.

Virtual memory systems use this hierarchy to bring parts

of a program into main memory from the secondary memory

in terms of units called as pages [7]. Pages are brought into

main memory only when the executing process demands

them; this is known as demand paging.

A page fault is said to occur when a requested page is not

in main memory and needs to be brought from secondary

memory. In such a case an existing page needs to be

discarded. The selection of such a page is performed by page

replacement algorithms which try to minimize the page fault

rate at the least overhead.

This paper outlines the major advanced page replacement

algorithms in chronological order along with their relative

pros and cons. Here we have discussed basic algorithms

such as Belady’s MIN, LRU and CLOCK and move on to

the more advanced Dueling CLOCK, LRU-K, LIRS,

CLOCK-Pro, ARC and CAR algorithms.

 II.PAGE REPLACEMENT ALGORITHMS

When a page fault occurs, the operating system has to

choose a page to remove from memory to make room for the

page that has to be brought in. If the page to be removed has

been modified, while in memory, it must be rewritten to the

disk to bring the disk copy up to date. If, however, the page

has not been changed (e.g., it contains program text), the

disk copy is already up to date, so no rewrite is needed. The

page to be read in just overwrites the page being evicted.

While it would be possible to pick a random page to evict

at each page fault, system performance is much better if a

page that is not heavily used is chosen. If a heavily used

page is removed, it will probably have to be brought back in

quickly, resulting in extra overhead. Much work has been

done on the subject of page replacement algorithms, both

theoretical and experimental.

The best page replacement algorithm is clearly the one

that manages the pages of a running process in such a way,

that the execution of the process produces the least possible

number of page faults. This way the running process does

not wait for pages being brought back from the swap area

after a page fault. Therefore the process completes

sooner.[10]

A. First In First Out (FIFO)

The simplest page-replacement algorithm is a FIFO

algorithm. A FIFO replacement algorithm associates with

each page the time when that page was brought into

memory. When a page must be replaced, the oldest page is

chosen. Notice that it is not strictly necessary to record the

time when a page is brought in. We can create a FIFO queue

to hold all pages in memory. We replace the page at the head

of the queue. When a page is brought into memory, we insert

it at the tail of the queue.[9]

B. Belady’s MIN

This is the most optimal algorithm which guarantees best

performance. It suggests removing the page from the

memory which is not to be accessed for the longest time.

This optimal result is referred to as Belady’s MIN algorithm

or the clairvoyant algorithm. The replacement decisions rely

International Journal of Electronics, Communication & Soft Computing Science and Engineering
 ISSN: 2277-9477, Volume 2, Issue 4

17

on knowledge of the future page sequence but it is

impossible to predict how far in the future pages will be

needed. This makes the algorithm impractical for real

systems. This algorithm can be used to compare the

effectiveness of other replacement algorithm making it

useful in simulation studies since it provides a lower bound

on page fault rates under various operating conditions.

C. Least Recently Used (LRU)

 If we use the recent past as an approximation of the near

future, then we will replace the page that has not been used

for the longest period of time This approach is the Least-

Recently-Used (LRU) algorithm. LRU replacement

associates with each page the time of that page's last use.

When a page must be replaced, LRU chooses that page that

has not been used for the longest period of time.[8]

 The LRU policy is based on the principle of locality

which states that program and data references within a

process tend to cluster. For a long time, LRU was considered

to be the most optimum online policy. The problem with this

approach is the difficulty in implementation. One approach

would be to tag each page with the time of its last reference;

this would have to be done at each memory reference, both

instruction and data. LRU policy does nearly as well as an

optimal policy, but it is difficult to implement and imposes

significant overhead.

D. CLOCK

 In CLOCK, all page frames are visualized to be

arranged in form of a circular list that resembles a clock.

Figure 2.1: The clock page replacement algorithm.[8]

The hand of the clock is used to point to the oldest page in

the buffer as shown in Figure 2.1. Each page has an

associated reference bit that is set whenever the particular

page is referenced. The page replacement policy is invoked

in case of a page miss, in which case the page pointed to by

the hand, i.e. the oldest page is inspected. If the reference bit

of the page is set, then the bit is reset to zero and the hand is

advanced to point to the next oldest page. This process

continues till a page with reference bit zero is found.

E. Dueling CLOCK

Dueling CLOCK is an adaptive replacement policy that is

based on the CLOCK algorithm. A major disadvantage of

the regular CLOCK algorithm is that it is not scan resistant

(The page replacement algorithm that does not allow

scanning to push frequently used pages out of main memory

is said to be scan resistant [2]). To combat this drawback, a

scan resistant CLOCK algorithm is presented and a set

dueling approach is used to adaptively choose either the

CLOCK or the scan resistant CLOCK as the dominant

algorithm for page replacement. In order to make clock scan

resistant, the only change required is that the hand of the

clock should now point to the newest page in the buffer

rather than the oldest page. Now, during a sequential scan,

the same page frame is inspected first every time, and only a

single page frame is utilized for all pages in the scan keeping

the rest of the frequently accessed pages secure in the buffer.

The Dueling CLOCK algorithm suggests a method to

adaptively use the above two algorithms, namely, CLOCK

and scan resistant CLOCK. The cache is divided into three

groups, G1, G2, and G3. Small group G1 always uses

CLOCK algorithm for replacement while small group

G2always uses the scan resistant CLOCK policy. The larger

group G3 can use either CLOCK or scan resistant CLOCK

policies depending upon the relative performance of groups

G1 and G2.

 In order to determine the replacement policy for G3, a 10

bit policy select counter (PSEL) is used. The PSEL counter

is decremented whenever a cache miss occurs on the cache

set in group G1 and the counter is incremented whenever a

cache miss occurs on the cache set in group G2.

Now, group G3 adopts CLOCK replacement policy when

the MSB of PSEL is 1, other G3 uses the scan resistant

CLOCK policy. In practice, Dueling CLOCK algorithm has

been shown to provide considerable performance

improvement over LRU when applied to the problem of L2

cache management.

F. LRU-K

The LRU policy takes into account the recency

information while evicting pages, without considering the

International Journal of Electronics, Communication & Soft Computing Science and Engineering
 ISSN: 2277-9477, Volume 2, Issue 4

18

frequency. To consider the frequency information, LRU-K

was proposed which evicts pages with the largest backward

K-distance. Backward K-distance of a page p is the distance

backward from the current time to the K
th

 most recent

reference to the page p. Since this policy considers K
th

 most

recent reference to a page, it favors pages which are

accessed frequently within a short time. Experimental results

indicate that LRU-K performs better than LRU [6]; while

higher K does not result in an appreciable increase in the

performance, but has high implementation overhead.

G. Low Inter-reference Recency Set (LIRS)

The Low Inter-reference Recency Set algorithm takes into

consideration the Inter-Reference Recency of pages as the

dominant factor for eviction [3].

Figure 2.2 describes a scenario where stack S holds three

kinds of blocks: LIR blocks, resident HIR blocks, non-

resident HIR blocks, and a list Q holds all of the resident

HIR blocks. Each HIR block could either be in stack S or

not.

The Inter-Reference Recency (IRR) of a page refers to the

number of other pages accessed between two consecutive

references to that page. It is assumed that if current IRR of a

page is large, then the next IRR of the block is likely to be

large again and hence the page is suitable for eviction as per

Belady's MIN. It needs to be noted that the page with high

IRR selected for eviction may also have been recently used.

The algorithm distinguishes between pages with high IRR

(HIR) and those with low IRR (LIR). The number of LIR

and HIR pages is chosen such that all LIR pages and only a

small percentage of HIR pages are kept in cache. Now, in

case of a cache miss, the resident HIR page with highest

recency is removed from the cache and the requested page is

brought in. Now, if the new IRR of the requested page is

smaller than the recency of some LIR page, then their LIR /

HIR statuses are interchanged. Usually only around 1% of

the cache is used to store HIR pages while 99% of the cache

is reserved for LIR pages.

Figure 2.2 : The LIRS stack S holds LIR blocks as well as

HIRS blocks with or without resident status, and a list Q

holds all the resident HIR blocks.

H. CLOCK-Pro

The CLOCK-Pro algorithm tries to approximate LIRS

using CLOCK. Reuse distance, which is analogous to IRR of

LIRS, is an important parameter for page replacement

decision in CLOCK-Pro [4]. When a page is accessed, the

reuse distance is the period of time in terms of the number of

other distinct pages accessed since its last access. A page is

categorized as a cold page if it has a large reuse distance or

as a hot page if it has a small reuse distance.

Let the size of main memory be m. It is divided into hot

pages (size: mh) and cold pages (size: mc). Apart from these,

at most m non-resident pages have their history access

information cached. Hence a total of 2m meta-data entries

are present for keeping track of page access history. A single

list is maintained to place all the accessed pages (either hot

or cold) in the order of page access. Naturally, the pages

with small recency are at the list head and the pages with

large recency are at the list tail.

After a cold page is accepted into the list, a test period is

granted to that page. This is done to give the cold pages a

chance to compete with the hot pages. If the page is re-

accessed during the test period, it is turned into a hot page.

On the other hand, if the page is not re-accessed, then it is

removed from the list. A cold page in its test period can be

removed out of memory; however, its page meta-data is kept

in the list for the test purpose until the end of its test period.

The test period is set as the largest recency of the hot

pages. The page entries are maintained in a circular list. For

each page, there are three status bits; a cold/hot indicator, a

reference bit and for each cold page an indicator to

determine if the page is in test period.

International Journal of Electronics, Communication & Soft Computing Science and Engineering
 ISSN: 2277-9477, Volume 2, Issue 4

19

Fig. 2.3. Working of CLOCK-Pro

 In CLOCK-Pro(see Fig. 2.3.), there are three hands.

HANDcold points to the last resident cold page i.e., the cold

page to be next replaced. During page replacement, if the

reference bit of the page pointed by HANDcold is 0, the page

is evicted. If the page is in the test period, its meta-data will

be saved in the list. If the reference bit is 1 and the page is in

test period, it is turned as a hot page and the reference bit is

reset. HANDcold is analogous to the hand in the clock

algorithm.

 HANDhot points to the hot page with the largest recency.

If reference bit of the page pointed by HANDhot is 0, the

page is turned to cold page. If the reference bit is 1, then it is

reset and the hand moves clockwise by one page. If the page

is a non-resident cold page and its test period is terminated,

the page is removed from the list. At the end, HANDhot stops

at a hot page. At any point, if the number of non-resident

cold pages exceeds m, the test period of the cold page

pointed by HANDtest is terminated and the page is removed

from the list. This means that the cold page was not re-

accessed during its test period and hence should be removed.

HANDtest stops at the next cold page.

 When a page fault occurs, the page is checked in the

memory. If the faulted page is in the list as a cold page, it is

turned into a hot page and is placed at the head of the list of

hot pages. Also HANDhot is run to change a hot page with

largest recency to a cold page. This is done to balance the

number of hot and cold pages in the memory. If the faulted

page is not in the list, it is brought in the memory and set as

a cold page. This page is placed at the head of the list of cold

pages and its test period is started. At any point if the

number of cold pages exceed (mc + m), HANDtest is run to

evict non-referenced cold pages.

 Like LIRS, CLOCK-Pro is adaptive to access patterns

with strong and weak locality. Previous simulation studies

have indicated that LIRS and CLOCK-Pro provide better

performance than LRU for a variety of memory access

patterns.

I. Adaptive Replacement Cache (ARC)

 The Adaptive Replacement Cache (ARC) is an adaptive

page replacement algorithm developed at the IBM Almaden

Research Center [5]. The algorithm keeps a track of both

frequently used and recently used pages, along with some

history data regarding eviction for both.

 ARC maintains two LRU lists: L1 and L2. The list L1

contains all the pages that have been accessed exactly once

recently, while the list L2 contains the pages that have been

accessed at least twice recently. Thus L1 can be thought of

as capturing short-term utility (recency) and L2 can be

thought of as capturing long term utility (frequency). Each

of these lists is split into top cache entries and bottom ghost

entries. That is, L1 is split into T1 and B1, and L2 is split

into T2 and B2. The entries in T1 union T2 constitute the

cache, while B1 and B2 are ghost lists. These ghost lists

keep a track of recently evicted cache entries and help in

adapting the behavior of the algorithm. In addition, the ghost

lists contain only the meta-data and not the actual pages.

The cache directory is thus organized into four LRU lists:

1. T1, for recent cache entries

2. T2, for frequent entries, referenced at least twice

3. B1, ghost entries recently evicted from the T1

cache,

4. B2, similar ghost entries, but evicted from T2

If the cache size is c, then |T1 + T2| = c. Suppose |T1| = p,

then |T2| = c - p. The ARC algorithm continually adapts the

value of parameter p depending on whether the current

workload favors recency or frequency. If recency is more

prominent in the current workload, p increases; while if

frequency is more prominent, p decreases (c - p increases).

Also, the size of the cache directory, |L1| + |L2| = 2c.

For a fixed p, the algorithm for replacement would be as:

1. If |T1| > p, replace the LRU page in T1

2. If |T1| < p, replace the LRU page in T2

3. If |T1| = p and the missed page is in B1, replace the

LRU page in T2

4. If |T1| = p and the missed page is in B2, replace the

LRU page in T1

The adaptation of the value of p is based on the following

idea: If there is a hit in B1 then the data stored from the

point of view of recency has been useful and more space

should be allotted to store the least recently used one time

data. Thus, we should increase the size of T1 for which the

value of p should increase.

If there is a hit in B2 then the data stored from the point of

view of frequency was more relevant and more space should

be allotted to T2. Thus, the value of p should decrease. The

amount by which p should deviate is given by the relative

sizes of B1 and B2.[5]

J. CLOCK with Adaptive Replacement (CAR)

CAR attempts to merge the adaptive policy of ARC with

the implementation efficiency of CLOCK [1]. The algorithm

maintains four doubly linked lists T1, T2, B1, and B2. T1

and T2 are CLOCKs while B1 and B2 are simple LRU lists.

The concept behind these lists is same as that for ARC. In

addition, the lists T1 and T2 i.e. the pages in the cache, have

a reference bit that can be set or reset. Intuitively T1
0
 ,

B1indicate “recency”(Fig. 2.(a)) and T1
1
U T2 U B2 indicate

“frequency”(Fig. 2.(b)).

The precise definition of four lists is as follows:

International Journal of Electronics, Communication & Soft Computing Science and Engineering
 ISSN: 2277-9477, Volume 2, Issue 4

20

1.T1
0
 and B1 contains all the pages that are referenced

exactly once since its most recent eviction from T1 U T2 U

B1 U B2 or was never referenced before since its inception.

2. T1
1
 , B2 and T2 contains all the pages that are

referenced more than once since its most recent eviction

from T1 U T2 U B1 U B2.

The two important constraints on the sizes of T1, T2, B1

and B2 are:

1. 0 ≤ |T1|+|B1| ≤c.

By definition,T1 U B1 captures recency. The size of

recently accessed pages and frequently accessed pages keep

on changing. This prevents pages which are accessed only

once from taking up the entire cache directory of size 2c

since increasing size of T1 U B1 indicates that the recently

referenced pages are not being referenced again which in

turn means the recency data that is stored is not helpful.

Thus it means that only the frequently used pages are re-

referenced or new pages are being referenced.

2. 0 ≤ |T2|+|B2| ≤ 2c.

If only a set of pages are being accessed frequently, there

are no new references. The cache directory has information

regarding only frequency.

Fig : (a)

Fig : (b)

Fig. 2.4 : Working of Clock with Adaptive Replacement

Figure. 2.4 shows a visual description of CAR. The

CLOCKS T1 and T2 contain those pages that are in the

cache and the lists B1 and B2 contain history pages that

were recently evicted from the cache. The CLOCK T1

captures “recency” while the CLOCK T2 captures

“frequency.” The lists B1 and B2 are simple LRU lists.

Pages evicted from T1 are placed on B1, and those evicted

from T2 are placed on B2. The algorithm strives to keep B1

to roughly the same size as T2 and B2 to roughly the same

size as T1. The algorithm also limits |T1| + |B1| from

exceeding the cache size. The sizes of the CLOCKs T1 and

T2 are adapted continuously in response to a varying

workload. Whenever a hit in B1 is observed, the target size

of T1 is incremented; similarly, whenever a hit in B2 is

observed, the target size of T1 is decremented. The new

pages are inserted in either T1 or T2 immediately behind the

clock hands which are shown to rotate clockwise. The page

reference bit of new pages is set to 0. Upon a cache hit to

any page in T1 ∪ T2, the page reference bit associated with

the page is simply set to 1. Whenever the T1clock hand

encounters a page with a page reference bit of 1, the clock

hand moves the page behind the T2 clock hand and resets

the page reference bit to 0. Whenever the T1 clock hand

encounters a page with a page reference bit of 0, the page is

evicted and is placed at the MRU position in B1. Whenever

the T2 clock hand encounters a page with a page reference

bit of 1, the page reference bit is reset to 0. Whenever the T2

clock hand encounters a page with a page reference bit of 0,

the page is evicted and is placed at the MRU position in

B2.[1]

The idea behind the algorithm is as follows. In case of a

cache hit, the requested page is delivered from the cache and

its reference bit is set. Instead, if the page is not in the cache

but is present in list B1, this indicates the page had been

used once recently before being evicted from the cache. This

page is then moved to the head of T2 and its reference bit is

set to 0. Also, a hit in B1 indicates that pages used once

recently are required again implying a recency favoring

workload.

 Hence the value of p has to be increased resulting

increase in the size of T1. Accordingly, if the page is not in

the cache but in B2, this indicates that the page had been

used frequently before being evicted from the cache. This

page is then moved to the head of T2 and its reference bit is

set to 0. Also, a hit in B2 indicates that the pages used

frequently are required again implying a frequency favoring

workload. Hence the value of p has to be decreased resulting

increase in the size of T2.

International Journal of Electronics, Communication & Soft Computing Science and Engineering
 ISSN: 2277-9477, Volume 2, Issue 4

21

 Finally if the page is not found in B1 U B2, then the

page is added to the MRU position in T1. In any of the

above cases if the cache is full (|T1| + |T2| = c), then the

CLOCK policy is applied on either T1 or T2 depending on

the parameter p.

CONCLUSION

 Modern computers often have some form of virtual

memory. In the simplest form, each process’ address space is

divided up into uniform sized blocks called pages, which can

be placed into any available page frame in memory. There

are many page replacement algorithms: aging and WSClock.

LRU-based working set size estimation is an effective

technique to support memory resource management.

 Paging systems can be modeled by abstracting the page

reference string from the program and using the same

reference string with different algorithms. These models can

be used to make some predictions about paging behavior. To

make paging systems work well, choosing an algorithm is

not enough; attention to issues such as determining the

working set, memory allocation policy, and page size are

required.

 This paper outlines that evolution of page replacement

algorithms lead to efficient use of memory. These technique

one by one are more applicable by significantly reducing its

overhead. Experimental evaluation shows that, these

algorithms are capable of reducing the overhead with

sufficient precision to improve memory allocation decisions.

REFERENCES
[1] S. Bansal, and D. Modha, “CAR: Clock with Adaptive Replacement”,

FAST-’04 Proceedings of the 3
rd

 USENIX Conference on File and Storage

Technologies, pp. 187-200, 2004.

[2] A. Janapsatya, A. Ignjatovic, J. Peddersen and S. Parameswaran,
“Dueling CLOCK: Adaptive cache replacement policy based on the

CLOCK algorithm”,Design, Automation and Test in Europe Conference

and Exhibition, pp. 920-925, 2010.

[3] S. Jiang, and X. Zhang, “LIRS: An Efficient Policy to improve Buffer

Cache Performance”, IEEE Transcations on Computers, pp. 939-952, 2005.

[4] S. Jiang, X. Zhang, and F. Chen, “CLOCK-Pro: An Effective
Improvement of the CLOCK Replacement”, ATEC ’05 Proceedings of the

annual conference on USENIX Anuual Tecchnical Conference, pp. 35,

2005.
[5] N. Meigiddo, and D. S. Modha, “ARC: A Self-Tuning, Low overhead

Replacement Cache”, IEEE Transactions on Computers, pp. 58-65, 2004.

[6] J. E. O’neil, P. E. O’neil and G. Weikum, “An optimality Proof of the
LRU-K Page Replacement Algorithm”, Journal of the ACM, pp. 92-112,

1999.

[7] A. S. Sumant, and P. M. Chawan, “Virtual Memory Management
Techniques in 2.6 Linux kernel and challenges”, IASCIT International

Journal of Engineering and Technology, pp. 157-160, 2010.

[8] Tanenbaum, Andrew Stuart., “Modern Operating Systems”, Prentice
Hall, 2001.

[9] Operating System Concepts 6th ed - Silberschatz Galvin
[10] “The Page Replacement with Working Set for Linux” by V. M. Aswar

at National Conference on “Advances in Engg. And Management
presentation, Indira College of Engineering and Management, Post:

Parandwadi, Tal: Maval Pune. Jan. 2011.

AUTHOR’S PROFILE

Varsha M. Aswar is currently pursuing

her Master.Degree In Computer Science and

Engineering at the Prof. Ram Meghe
Institute of Technology and Research,

Amravati (India). Her areas of interest

include Operating System, Computer
Graphics.

Prof. Amol. P. Bodkhe is Professor in

the Department Of Electronics and

Telecommunication Engineering at Prof. Ram

Meghe Institute of Technology & Research,
Badnera – Amravati. He has done his M.E in

Electronics and Telecommunication

Engineering. He has started his work of Ph.D.
He is having 27 years of teaching experience.

His area of interest is communication.

